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Abstract—A novel multivariable adaptive control scheme 

for a lactic fermentation biotechnological process with 
unknown inputs taking place inside two sequenced Continuous 
Stirred Tank Reactors (CSTRs) is developed. The design of the 
control scheme is achieved under the hypothesis that the 
influent substrate concentrations and the reaction kinetics are 
unknown and time-varying, but also a part of the state 
variables are unmeasurable. The adaptive controller includes a 
linearizing controller connected with two state observers used 
for the real-time estimation of the unknown input substrate 
concentrations and with a parameter estimator which is used 
for kinetics estimation. The estimation of unknown influent 
substrate concentrations is realized by using the measurements 
of the internal substrate and lactic acid concentrations. The 
proposed parameter estimator employs the information which 
is provided on-line by two sliding-mode state observers. The 
performance of the designed control scheme is evaluated via 
simulation experiments conducted for a lactic acid production 
process (LAPP) carried out inside two sequenced CSTRs. The 
dynamics of the considered bioprocess is described by a 
nonlinear, incompletely known and time varying model. 

Keywords—Adaptive control, Nonlinear systems, On-line 
estimation, Lactic fermentation bioprocesses 

I. INTRODUCTION 

Fermentation bioprocesses are one of the most important 
processes in biotechnology. Usually, these bioprocesses take 
place in stirred tank reactors with homogeneous culture and 
their evolution is expressed by a system of ordinary 
differential equations, which characterizes the energy and 
mass balances. In the industrial practice, a vital engineering 
challenge of controlling of fermentation processes consists 
in the improvement of stability as well as the enhancement 
of operational process efficiency. One of the difficulties that 
arise in the advanced control design for these living 
processes consist in the fact that for a lot of cases, their 
models contain yield coefficients and kinetic parameters 
characterized by time variation and high uncertainty, 
because of their inherently large natural variations [1-3]. 
Furthermore, a demanding issue is to find cheap and 
adequate sensors used for the measurement of essential 
biological variables [1,2]. To surmount these impediments, 
various control strategies were designed, analysed and 
tested. Among these we can highlight: input output 
linearization techniques [1,4], adaptive and optimal control 
structures [1,3,5-7], neural based control [8,9], sliding mode 
control [10], robust-adaptive control [11,12], and so on. 
Nearly all these methods need the design of the so-called 
“software sensors”, i.e. state observers (such as asymptotic 
observers and interval observers) and parameter estimators, 
which are necessary for real-time estimation of component’s 

concentrations, and moreover for the reconstruction of 
uncertain kinetic parameters or reaction rates [1,2,11-15]. 
To deliver accurate estimation of the unknown states, the 
asymptotic observers require the knowledge of process 
inputs (e.g. substrate input concentrations). But in the 
industry there are several processes for which the complete 
knowledge of the inputs is unavailable; therefore, the 
mentioned classical observers cannot be applied. For these 
situations, the interval observers or interval sliding mode 
observers constitute a viable solution. These observers do 
not deliver an estimated value but a certain range of 
variation of the estimated variable [11,12,14,15].        

In this work we propose a novel multivariable indirect 
adaptive control method for a LAPP taking place inside two 
CSTRs sequentially connected. This process must be 
controlled in order to obtain a maximal quantity of lactic 
acid as well to avoid the instability which can exists due to 
unavoidable disturbances produced by loading rate 
variations [3,6]. In the recent literature, some adaptive 
schemes were proposed for this bioprocess [3,5,6], designed 
under the condition of influent flow rates full knowledge. 
Also, robust-adaptive strategies were designed in [12] by 
using interval observers which consider the known bounds 
of the unknown input concentrations [14]. In this work, an 
innovative adaptive control strategy is developed and 
analysed. The proposed adaptive control algorithm is 
designed under the realistic hypotheses that the influent 
substrate concentrations are completely unknown and time-
varying, some process state variables cannot be measured, 
and the reaction kinetics are time-varying and completely 
unknown. The suggested adaptive structure includes a 
linearizing controller for which all the unknown variables 
are substituted by their on-line estimations computed by 
using suitably state observers and a parameter estimator 
necessary for real-time calculation of the completely 
unknown process kinetic rates. Unlike the approach 
developed in [12], we propose two sliding mode state 
observers (SMO) in order to estimate the two unknown 
input substrate concentrations, based on the measurements 
of the internal substrate and lactic acid concentrations. Two 
reaction rates in two sequenced reactors are assumed to be 
unknown and are reconstructed through a parameter 
estimator, in fact an OBE (observer-based estimator), which 
uses also the real-time information given by the two SMOs.  

The paper structure is as follows. After presentation of 
lactic fermentation process model in Section II, Section III 
is dedicated to the estimation and control strategies. In 
Section IV, the behaviour and the performance of proposed 
algorithms are fully analysed via realistic numerical 
simulations. Finally, Section V completes the paper. 
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II. BIOPROCESS MODELLING ISSUES 

Traditionally, the food industry was and remains the 
domain where the lactic acid (LA) has a variety of 
utilizations. Also, LA is widely used in the textile industry 
as well as in pharmaceutical and cosmetic bioindustry 
[3,10]. In the last decades, the lactic acid is used for 
production of novel biodegradable polylactic products. 
Therefore, in the last ten years there was a high interest in 
the modelling and controlling of lactic acid production by 
using cheaper substrates, e.g. wheat flour [7, 16-18]. It was 
shown that the growth and productivity of LAPP is affected 
by the limiting restrictions of the nutrient and the inhibitory 
effect produced by LA accumulation in the reactor 
[3,19,20]. Another specificity is that the fertility of culture 
medium can influence the growth dynamics [3,19]. A 
dynamical model which takes into account both the 
inhibitory and the nutritional effects in the case of a lactic 
acid production obtained by growing Lb. casei bacteria 
inside a batch bioreactor is presented in [3]. In this paper, 
we use a model, which corresponds to a continuous process 
that takes place inside two CSTRs sequentially connected 
[3] (Figure 1). Assuming that each bioreactor has same 
constant volume V, for these two-connected CSTRs, the 
mathematical model, obtained by mass balance, consists in a 
set of nonlinear differential equations [3]. Note that this 
model is the same used in [3,12], but for an easy 
understanding, a short description is recalled in this paper: 

First stage: 

11111 )( BDBkB d −−μ=  (1) 

11111 PDBP p −ν=       (2) 

11111111 SDSDBqS ins −+−=      (3) 

111121 α−α=α DD in , with 12111 DDD +=      (4) 

Second stage: 

22111222 )()( BDDBDBkB d +−+−μ=  (5) 

22111222 )( PDDPDBP p +−+ν=  (6) 

2212211222 )( SDDSDSDBqS ins +−++−=  (7) 

221112 )( α+−α=α DDD  (8) 

where Bk, Sk, Pk and kα  with k = 1, 2 are as follows: the 
concentrations of bacteria (biomass), substrate (glucose), 
LA, and the enrichment factor in the two connected reactors. 

kμ , pkν  and skq  (k = 1, 2) represent, respectively, specific 

growth rates of bacteria, lactic acid production, and 
substrate consumption in each reactor. kd is the bacteria 
death rate.  

 
Fig. 1.  Two connected reactors for lactic acid production. 

D11 is the dilution rate of S1 continuously fed in the first 
bioreactor with the concentration Sin1. D12 is the dilution rate 
of α1 added in the first bioreactor with the influent 
concentration αin1. D2 is the dilution rate of substrate S2 
added in the second bioreactor with the concentration Sin2. In 
the second bioreactor no enrichment factor is feeding.  

In the model (1)-(8) the specific rates in each reactor are 
described by [3]: 
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where kmaxμ  denotes the maximum value of kμ , gc
CP  is the 

critical value of lactic acid concentration, gc
Pk

K  is the lactic 

acid inhibition constant, gc
SK  and rc

Sk
K  are the affinity 

constants of the growing bacteria, and respectively of the 
resting bacteria for substrate, and PSY  represents the 
constant conversion coefficient of substrate to lactic acid. It 
should be noted that the superscripts gc and rc highlight the 
parameters related to bacteria in the stages of growing and 
respectively in the resting stage. Finally, in (9), β and η  are 
two positive constants.  

In (9), some process parameters can be readapted 
function of the enrichment factor kα  as [3]: 
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where αμK , PKα  and SKα  are saturation constants and α0 

is the minimal nutritional factor. maxμ , gc
PK max  and rc

SK max  
are the limit values of each specified parameter. Relations 
(10) express the nutritional restrictions, which are based on 
a batch growth model suggested in [19]. 

III. CONTROL STRATEGIES 

Like in [12], the control objective of the proposed 
control structure consists to regulate the reactor’s load for 
the substrate conversion to lactic acid via fermentation. 
Under the assumptions that the model (1)-(8) is 
incompletely known and time varying and the two influent 
substrate concentrations are unknown and time-varying, the 
process control purpose is to keep the bioprocess at certain 
operating points corresponding to a large LA production rate 
that is to a minimal concentration of the unconsumed 
substrate. It has been shown that these requests are achieved 
if the bioprocess operating points are regulated around 
certain values of the concentrations of S1 and S2 inside the 
two reactors, denoted by *

1S  and *
2S  (see steady state study 

in [3] ). The best values of these set points are 3*
1 =S g/l and 

5*
2 =S g/l. This selection ensures the achievement of the 

two above stated aims. Then, as control inputs we chose the 

380



dilution rates D1 and D2. In conclusion, we will have a 
multivariable control scheme characterized by two outputs 
S1 and S2, and by two inputs D1 and D2, i.e., TSSy ][ 21= , 

TDDu ][ 21= . 

A. Exact linearizing feedback control 
Let’s take into consideration the ideal case when completely 
knowledge concerning the bioprocess (state variables, 
kinetics and yield coefficients) is available. Also, assume 
that for the closed loop behaviour of the system composed 
by the two connected reactors it is desirable to have a first 
order linear stable comportment given by: 

 0)()( ** =−⋅Λ+− yyyy  ,         (11) 

where TSSy ][ *
2

*
1

* =  is piecewise constant desired values 

of S1 and S2, and 2,1,0},{ =>λλ=Λ kdiag kk . 

From the equations (1)-(8) one can deduce that the 
dynamic of controlled variables can be expressed as: 
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Then, the input-output model (12) has the relative degree 
[21] equal to one. Thus, from (11) and (12), by using the 
linearization technique, the next exact multivariable control 
law is obtained: 
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In a normal operation of the reactors we have 11 inSS <  

and 22 inSS < , which is a sufficient condition for the non-

singularity of decoupling matrix 
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So, it is invertible. 
The control law (13) directs to a linear model of the 

tracking error yyey −= *  described by yy ee Λ−= . The 

equilibrium 0=ye  is an exponential stable point of this 

model as long as .0, 21 >λλ  This control law represents the 
foundation for the designing of the adaptive controller, but 
also a benchmark in order to analyse the performance and 
the comportment of the closed loop system in this ideal case 
in comparison with the proposed adaptive system. 

B.  A new multivariable adaptive controller 
 Since a prior knowledge related to process considered in 
subsection A is not realistic, we will derive a new adaptive 
control algorithm under the next more realistic conditions: 
 the concentrations Sin1 and Sin2 of the two influent 

substrates are time-varying and unknown; 
 the unknown specific growth rates kμ , pkν  and skq  (k 

= 1, 2) are time-varying;  

 the unmeasurable variables are B1 and B2;  
 the real-time measurements are: S1, P1, and S2, P2. 
 the other process variables (D12, αin1, etc.) and 

coefficients are known. 
Under these assumptions a new adaptive controller is 

achieved as follows.  
Because the controller (13) depends on the states B1, B2, 

S1, S2 from which only S1 and S2 can be real-time measured, 
as well as of the unknown concentrations Sin1 and Sin2, the 
conclusion is that all unavailable states must be calculated 
or estimated.  

To estimate Sin1 and Sin2 we propose two simplified 
variants of the generalized sliding-mode observer designed 
in [22,23] and used in [24] under the assumption that for the 
two cascaded bioreactors the variables 11, PS  and 22 , PS are 
measurable on-line. 

Estimation of 1inS . We denote by 111 SYPZ PSS +=  a 
linear combination of real-time measurements of S1 and P1 
in the first reactor. Then from model (1)-(8) the dynamic of 
ZS1 is provided by the linear differential equation: 

   112111 )( inPSSS SDDYZDZ −+−= ,        (14) 

Then, an observer able to calculate the on-line estimation 

1
ˆ

inS  of the unknown Sin1 is given by:  
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where 111
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with 0, 2111 >ββ . It can be noticed that we have five tuning 

parameters: 211121111 ,,,, ββααSL . 

Estimation of 2inS . We denote by 222 SYPZ PSS +=  a 
linear combination of the real-time measurements of S2 and 
P2 in the second reactor. From model (1)-(8) the dynamic of 
ZS2 is provided by the next linear differential equation: 

22221112 )( inPSSSS SDYZDDZDZ ++−= ,      (17) 

Like in the case of Sin1, an observer able to provide the 

real-time estimation 2
ˆ

inS  is given by:  
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with 0, 2212 >ββ . This observer has also five tuning 

parameters: 221222122 ,,,, ββααSL . 

Since the specific growth rates siq  (i = 1, 2) are 
unknown and B1 and B2 are not measurable, then the 
reaction rates 111 Bqr s=  and 222 Bqr s=  in (3) and (7) 
respectively, as well as in (12), can by expressed as 

111 ρ=Bqs , 222 ρ=Bqs , where ρ1 and ρ2 are unknown time-
varying parameters that can be summarized in the unknown 
vector T][ 21 ρρ=ρ . Then the control law (14) becomes: 
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where 1
ˆ

inS  and 2
ˆ

inS  are on-line estimations of unknowns 
Sin1 and Sin2 given by the estimators (15) and (18) 
respectively. In (20) instead of the unknown parameters 

1ρ  and 2ρ  will be used their estimated values 1ρ̂  and 2ρ̂  
provided on-line by a suitable parameter estimator, in fact 
an OBE [1,2,11,12], implemented using only the variables 

1S  and 2S  whose dynamics are rewritten as follows: 
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Then the estimator for the real-time computation of 
T]ˆˆ[ˆ 21 ρρ=ρ  is particularized as in the following relations: 
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where 2,1,0 =>γ kk  (the gains of updating laws (22)), 

and 2,1,0 =<ω kk , are tuning parameters, whose values 
are chosen so that to assure the stability as well as the 
tracking properties of the parameter estimator (details can be 

found in [1,2,11]), and 1
ˆ

inS  and 2
ˆ

inS  are on-line estimations 
of unknown concentrations Sin1 and Sin2.  

Then, the new multivariable adaptive controller is 
achieved as a combination of observers (15)-(16) and (17)-
(18) with the parameter estimator (22)-(23) and with the 
control law (20) rewritten as follows: 
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The adaptive control system is depicted in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  The block representation of the new adaptive controlled system 

IV. SIMULATION RESULTS AND COMMENTS 

The performance and the behaviour of the proposed 
adaptive controller are examined using realistic simulation 
conditions. For a correct evaluation, the numerical 
simulations were conducted by using the mathematical 
model equations (1)-(10) under identical circumstances. The 
simulations were performed using the next values for the 
yield and kinetic coefficients [3,9,12]: 

0
maxμ = 0.45 h-1, gc

SK = 0.5 g/l, rc
SK max = 12 g/l, gc

PK max = 
15 g/l, δ = 3.5, η = 3.5, β = 0.9 h-1, α0 = 0.02 g/l, αμK = 0.2 
g/l, PKα = 1.1 g/l, SKα = 4 g/l, gc

CP = 95 g/l, PSY = 0.98 g/g, 

dk = 0.02 h-1, D12 = 0.025 h-1, 0
1inα  = 6 g/l. 

The performance of the adaptive controller (24), by 
comparison with the exact linearizing control law (13) (this 
controller produces the best response and is used as 
benchmark), has been extensively tested in the following 
conditions: 
 the input concentrations Sin1 and Sin2 are time-varying, as 

in Figures 3 and 4, and are assumed completely unknown;  
 the specific rates kμ , pkν  and skq  ( 2,1=k ) are unknown 

and time-varying;  
 the concentration of the influent enrichment factor 1inα  is 

time varying as:  

))20/sin(25.01()( 0
11 tt inin π⋅+⋅α=α .         (26) 

 the kinetic coefficient 0
maxμ  is also supposed a time 

varying parameter as: ))40/sin(1.01()( 0
max

0 tt π⋅+μ=μ ; 

 the state variables 1B  and 2B  are not measurable;  
 the measurements accessible on-line are: S1, P1 and S2, P2. 
 the other variables, coefficients and parameters (D12, 1inα , 

YPS, etc.) are known. 

Remark 1. The variation form and the expressions of Sin1 
and Sin2 are given only for the comprehensiveness and 
reproducibility of simulation results.            � 
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382



The comportment of the closed-loop system under the 
above assumptions is given in Figures 5-10. The graphics in 
Figure 5 depict the evolution of the controlled variables S1 
(down) and S2 (up), and Figure 6 shows the profiles of the 
control inputs D1 (up) and D2 (down). To check the 
regulation properties, the simulations were planned such that 
the set points have several changes in the vicinity of the 
operational values 3*

1 =S g/l, 5*
2 =S g/l. Taking in account 

the practical reality, we supposed that the measurements of 
S1 and S2 are vitiated with additive zero mean white noise 
(5% from its nominal values). From Figures 5 and 6 one can 
observe that the controlled variables S1 and S2 track their 
references, while the control variables D1 and D2 are 
maintained in their physical limits. The profiles of the 
estimates of the unknowns Sin1 and Sin2 delivered by the 
observers (15)-(16) and (18)-(19) are presented in Figures 7 
and 8, from which is visible that the observer performs 
suitably even if the measurements are affected by noise. 

The estimations of the unknown reaction rates ρ1 and ρ2 
are plotted in Figures 9 and 10, from which it can be seen 
that the OBE works very well.  

 
Fig. 3.  The time profile of Sin1. 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  The time profile of Sin2 , 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  The time evolution of outputs S1 and S2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  Profile of control inputs outputs D1 and D2 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Estimation of unknown variable Sin1. 
 

 
Fig. 8.  Estimation of unknown variable Sin2. 
 

For control laws (25) and (13), the used gain values are 
=λ=λ 21  0.25, and the tuning parameters of the observers 

(15)-(16) and (18)-(19) have been set to the next values: 

5.21 =SL ,  5.011 =α , 5021 =α , 011 =β , 5.221 =β , 

95.22 =SL , 25.012 =α , 27522 =α , 5.012 =β , 25.322 =β , 
and of OBE (23)-(24) to:  

=ω1  -0.75, =ω2  -0. 5, =γ1 0.5, =γ2 0.4. 

The obtained profiles presented in Figures 5-10 illustrate 
that the comportment of the whole adaptive system is 
proper, being very close to the comportment of closed loop 
system in the benchmark case (known bioprocess model) 
when is used the exact linearizing controller (13).  

The adaptive controller can keep the outputs S1 and S2 
very close to their desired value, despite many realistic 
disturbances and uncertainties: high variation and 
uncertainty related to Sin1 and Sin2, the time variation of αin1, 
time variation and uncertainty of the process growth rates. 
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Fig. 9.  Unknown parameter ρ1 and its estimated value 1ρ̂ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10.  Unknown parameter ρ2 and its estimated value 2ρ̂ . 

V. CONCLUSION 

In this work a novel multivariable adaptive control 
scheme for a continuous lactic fermentation process was 
developed and analysed. The adaptive control algorithm is 
designed under the assumption that the influent substrate 
concentrations as well as the reaction kinetics are unknown 
and time-varying, and some states are unmeasurable. 

The adaptive control scheme was obtained as a 
combination of an exact linearizing controller with two 
sliding mode state observers used for real-time computation 
of the two unknown influent substrate concentrations and 
with a parameter estimator used for the reconstruction of 
unknown process kinetic rates. To estimate the unknown 
input substrate concentrations, the two observers needed the 
measurements of the internal substrate and lactic acid 
concentrations. It must be noted that the parameter estimator 
used for the real-time reconstruction of the unknown 
kinetics uses also the real-time information delivered by the 
two sliding mode state observers.  

The numerical simulations conducted under some rough 
but realistic circumstances, such as uncertainties and noisy 
measurements, show a suitable behaviour and quite good 
performance of the controlled bioprocess. It is expected that 
this kind of control scheme to behave well in real operating 
conditions of these lactic fermentation bioprocesses. 

This type of adaptive control strategy is appropriate also 
for wastewater treatment bioprocesses, where the evolution 
of influent concentration substrates is unpredictable. 
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